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Q-METER THEORY
Yu.F.Kisselev!, C.M.Dulyaz, T.O.Niinikoski®

This paper develops the theory of series Q-meters used for measurements of
NMR signals. For the first time we have derived closed form expressions for the
nuclear susceptibility in terms of the Q-meter output voltage and for the residual
Q-curve. We discuss the corrections involved in measuring nuclear polarization
from NMR signals by using signals for the deuteron and proton as examples.
Deuteron signals are shown to contain a false asymmetry, while proton signals
have substantial distortions due to the long signal wings and the depth of modu-
lation. Moreover, for the first time the importance of making a phase correction is
demonstrated. We conclude that the series Q-meter with real part detection is not
sufficient to produce an output voltage from which the nuclear susceptibility can
be determined and thus an additional phase-sensitive detector is necessary for
obtaining the imaginary part of the signal as well.

The investigation has been performed at CERN, Geneva.

Teopus Q-MeTpa
10.® . Kucenes, K.M.Iynua, T.O. Huuankocku

B paGore ocymecrsneno aanbHeiiuee passutue TEOPHH TOCJAEAOBATENHHO-
ro J-meTpa, npubopa 1S UIMEpPEHUs SIEPHO NONSIPU3a LMK MHULIeHe. Boep-
BBIC [IOJy'IEHO BBIP@XKEHHE NIt SAEPHON BOCTIPDUMMUMBOCTH MMILEHHM YEpe3
BbIXOZHOE Hamnpsikenue O-merpa. O6cyxaaercs koppexuus NMR NPOTOHHBIX
M IEATPOHHBIX CHTHAJIOB, HCIIONB3YEMbIX MPU UIMEPEHUH noasipusanum. o~
Ka3aH0, YTO AEHTPOHHBIE CHTHANIBI CONEPHKAT JIOKHYIO acHMMeETpHio. TIpoToH-
HBIC CHUTHAJIBI CYHIECTBEHHO MCKAXEHBI NAMCTIEPCHOHHOM KOMIIOHEHTOM Npwu
Gonbu10it rTy6rHe MOTYASLMH. JeMOHCTPUPYETCS BaXKHOCTH HOBOTO THHA ha-
30BOM KOPPEKUMU. AHAIHU3 TOKA3BIBAET, YTO TIOCAEAOBATEbLHBIH Q-meTp c ze-
TEKTOPOM PEAJIbHOM KOMITOHEHTbI CUIHANA HE MO3BOJIIET BOCCTAHOBUTD aaep-
HYIO BOCTIPUMMYMBOCTB. UT06BI pemnts 3Ty npobnemy, tpebyerca A0mommu-
TEJbHbIH (ha30BbIi AETEXTOP MHUMOI KOMIIOHEHTHI CUTHAA.

PaGora seimonuena s HIEPH, XKenesa.

1. Introduction

The series Q-meter has found wide acceptance for the measurement of
NMR spectra, especially in the precise measurement of nuclear polarization
in polarized targets used in scattering experiments. Theoretical treatments
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Fig.1. This is a block diagram of the Q-meter circuit detecting the real part of the NMR signal.
The dashed lines correspond to the additions necessary to correct the Q-meter output signal such
that the new outputs become proportional to the nuclear polarization

[1,2,3] have, until now, centered on approximate solutions of the equations
for the Q-meter output voltage based on expansions in terms of the nuclear
susceptibility using circuit elements as parameters. In this paper, we express
the susceptibility as a function of the circuit parameters and the Q-meter
output voltage and, furthermore, demonstrate general properties of the rela-
tionship between the Q-meter output signal and the susceptibility.

The sensing probe of the Q-meter circuit, shown on Fig.1, is a coil
embedded in the material under study which couples inductively with the
magnetic moments of the nuclei in that material. As a result of this inter-
action, the coil impedance Z, varies linearly with the complex magnetic

susceptibility y(w) of the material according to'
Z,=r+iwL(1 + nx (@)), (D

where w = 27tv, v is the frequency of the rf generator, 7 is the effective filling
factor of the material in the coil and L is the inductance of the NMR coil
when y = 0. The complex function x(w) =x'(w) — ¢x''(w) is the nuclear
susceptibility of the material; its real part is called dispersion; and the ima-
ginary part, absorption. The susceptibility is finite for all frequencies, but
the dispersion changes the sign; it tends to have larger values in the vicinity
of the Larmor frequency. The absorption describes the spectral distribution

'In MKSA units



of spins near the NMR Larmor frequency and its integral is proportional to
the nuclear polarization. The constant of proportionality may be found by
measuring the signal for samples in thermal equilibrium (TE) in a known
magnetic field and temperature. In this case, the polarization is calculable
from the Maxwell — Boltzmann distribution and is described by the Bril-
louin function.

In the Q-meter, the coil is usually connected to a room-temperature tun-
ing capacitor and amplifier by a coaxial transmission line whose length is
adjusted to an integer number of half-wavelengths at the Larmor frequency.
These form a hybrid series tuned circuit [1]. Given the electrical parame-
ters of the receiver circuitry and a well-defined NMR line shape, it is not
difficult to calculate the Q-meter output voltage. In practice, however, we
wish to solve exactly the opposite problem; namely to evaluate the complex
magnetic susceptibility from the Q-meter signal. In this paper, we will
review the theory of the Q-meter and apply these ideas to specific examples
for proton and deuteron signals.

2. The Q-Meter Circuit

Since we are mainly concerned with series Q-meters using rf phase sen-
sitive signal detection and homodyne receiver circuitry [4,5 ] as in Fig.1, we
will incorporate the following definitions and values for the circuit para-

" meters now: '

Table of Circuit Parameters

Para- Typical value
meter Description of parameter Units Proton Deuteron
Yy Larmor frequency [MHz] 106.5 16.35
Av Range of frequency sweep [kHz] 600 500
R Feed resistance £9]] 900 900
R Damping resistance Q) 33 9

R, Amplifier input impedance [€L] 120 50

r Coil resistance [S2] 0.3 0.3

C » Tuning capacitance [pF] 19 200
L Coil inductance [uH]) 0.091 0.48
p Cable impedance [€] 50 50

€ Cable dielectric constant 2 2

a Cable attenuation constant .| [Np/m] 0.02 0.005
B Cable phase constant 8 = w Ve/c m™!]




Para- Typical value

meter | Description of parameter Units Proton Deuteron
1 Cable length | = nc/2vyVe [m) 4.99 6.42

n Number of cable half wavelengths S 1

c Speed of light {m/s] 2.9979-10° | 2.9979-10°
Ve Voltage of high frequency synthesizer vl 0.1 0.1

A(w)‘ Gain of high frequency amplifier 50 50

The ouptput of the amplifier is connected to the input of a phase sen-
sitive detector (PSD). The PSD selects the real part of the voltage at its input
terminal relative to a reference voltage. This is the main idea of the Liverpool
Q-meter [5]. In our conclusions, we will suggest the improvement of this
Q-meter design by adding another PSD for selecting the imaginary part of
the signal as well as the real part. Moreover, we also suggest a function that
will transform the output voltage to be proportional to the complex nuclear
susceptibility.

3. Determination of the Nuclear Susceptibility
from the Q-Meter Signal

The nuclear polarization is proportional to the integral of the absorp-
tion, where the limits of integration are usually restricted to frequencies
near the Larmor frequency (see Section 6). In other words, the polarization is
given by

[/

P=C [ y'(w)dw, (2)
wmin
where C is a constant determined from calibration at TE. To calculate the
polarization we thus need to know the absorption spectrum. Thus, one
would like to write an equation for the susceptibility as a function of the Q-
meter output voltage.

The Q-meter output voltage, which is the complex voltage at the output
of the rf amplifier, is a function of the nuclear susceptibility. However, the
effective filling factor of the coil, , from Eq.(1) disappears for relative
values of the polarization. Thus, we will define and calculate a complex
function £(w) = ny(w). The general expressions for the Q-meter output vol-
tage [1,3]can be written in complex form [6 ] as
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= n Z(&) '
V@) = —1—+pZ—(§'5 €))

where Z (&) is the resonant circuit impedance

Ly o’ tanh(yl) + p [r + twL(1 + )]

ZE)=R- wC," p+ [r+wI(l +&)tanh(yl) °

@

with ) :

p—;+R— Vn= A(w)VG and y=a+ 8, 5
where y is the complex propagation constant of the coaxial transmission line
and «a is its average attenuation constant. The coefficient p is the admittance

due to the feed and the shunt resistances RG and Ri . Table 1 describes the

circuit parameters and gives their numerical values used in our estimations.

If the generator frequency is swept slowly enough so that & (w) has no
explicit time dependence, then the normalized Q-meter output voltage from
Eq.(3).

v T = R ﬁPT(ES = eff(.f;‘) +.:T ff(§) )

can be considered an equivalent circuit impedance, Zeff, of a two terminal,
divided by the damping resistance R In other words, using the general

properties of two terminal relations [7 ], we can calculate the imaginary part
of the Q-meter output voltage from the real part by using the Kramers —
Kronig relation [7 ] for an impedance. Thus,

V@) : (@) do’
out eff
———Vn = Seff(w) t— fPf ‘————-— wz , )

where Set” 0 for both signs of nuclear polarization and # means that the

principal value of the integral be taken. In addition, the Kramers — Kronig
relation can be formally applied to the difference of two impedances mea-
sured at £ = 0 and & = 0 just as well as to Eq. (7). This difference

out(w) out(‘s) - Vom(é’ =0)
|4 v

n n

= Sw) +1T(w) =

S(w")dw'

—S(“’)'“_ ?f 22— o’ (8
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where
S(w) = Soe(E) — Soge& = 0), S(w)<0 or S(w)>0 )

and
T(w) = Teff(g) - Teff(&‘ = 0), 10

will be called the NMR signal because its real part, S(w), and its imaginary
part, T(w), are nearly proportional to the imaginary (absorption) and real
(dispersion) parts of the nuclear susceptibility, respectively. The real part of
the NMR signal, S(w), can be either positive or negative owing to the fact
that it is the difference of two independent measurements. Using Egs. (3,4,8)
we get the NMR signal in terms of the circuit impedance Z
AVout(w) _ 1 z2¢) -z €=0

vV, R0 +pZEI+pZE=0)]"

n

(11

Then by defining a frequency-dependent complex function
G(w) =p ' [1 + pZ, (¢ = 0)llp + (r + wwL) tanh(y]) Jcosh(y))  (12)

we find the normalized NMR signal as

. AVou(®@) 1
S@) +iT@) = —5— = g5y *
wlE

X 13
G(@) +p~ Lk cosh(yl) {pp +[1 + p(R — 1/wC,) tanh(y})}

and thereby the equation for §(w) in closed form is [6 ]
— 1R G ()
@) =1 @) - '@} = ——0F— X
. AV (@)/V,}
1- p~'RGG(w)cosh(y) {pp+ [1+ p(R — 1/wC ) Manh(yDHAV, (w)/ V)
(14)

where AVom(w)/ V,, (not to be confused with the modulation, M) is descri-

bed by Eq.(8). According to Eq.(14), the actual NMR signals have to be
transformed by a complex function to obtain the output signal as a linear
function of nuclear susceptibility (see Fig.1).
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It follows from the Kramers — Kronig relation for the susceptibility that
the solution to Eq.(14) must satisfy the equation [8 ]

w'—-w

-« 1Ry ' '

P —E =2 s Wt @) do’ 15
which is the condition for self-consistency of the experimental data. If the
signal wings are cut, then the imaginary part of the Q-meter signal cannot be
accurately calculated by Eq.(8). Hence, an error is produced in the calcu-
lation of the susceptibility from Eq.(14), and in this case Eq.(15) will no
longer be satisfied. We therefore propose that the real and imaginary parts
of the Q-meter signal be measured, thus to avoiding any complications of
using Eq.(8) in calculating £'(w) via Eq.(14).

4. Disoussion

Let us discuss the difference between the use of S(w) and y''(w) of
Eq.(14) in determining the polarization from the integrated spectra. It has
been shown (1,2,3] that the nuclear polarization is given approximately by

w
P=C [ Sw)do, (16)
@ .

min

where the integral is taken over the width Wpax~ Pmin ©f the frequency

1
sweep. Comparing Egs.(2,14,16) we come to the following conclusions:

1. The term £(w) in the denominator of Eq.13 describes the experimen-
tally observed difference in the form of the proton NMR line shape between
opposite signs of polarization. We will calculate this distortion later in
Section 4.2. The term AV (w)/ vV, in the denominator of Eq.(14) allows one

to find back y(w) without distortions from the experimental signal.

2. Eq.(16) does not take into account the frequency dependence, causes
a distortion for wide signals, most notably the false asymmetry of the deute-
ron signals. It can be shown, however, that the integral of a distorted signal
S(w) represents to a good approximation the polarization (Section 4.2).

3. Eq.(16) does not take into account the distortion of NMR signals due
to phase errors. It causes, via Vn(w) (see Eq.6), an additional mixing of

§'(w) and &''(w) in Eq.(14), and thus this effect cannot be accounted for
unless both the real and imaginary parts of the Q-meter output voltage are
measured (Section 4.4).

11



- 4.1, The First Order Expansion

A first order solution can be found by a complex series expansion of
Egs.(3,4) about &(w) = 0. Alternatively, we find the first order approxima-
tion to £(w) by setting AV_ (w)/V,= 0in the denominator of Eq.(14) giving

R
£ (w) + &' (w) = Gz(w) ‘aﬁ (;‘,I:l(w)] an
where AV_ (w)/V, as
RG 2 2
E' (@) = —7 {Im (G°) S() + Re(G") T()} (18)
and
£ (@) = =% Re (G)) S(w) — Im(G?) T(@)}- (19)

If only the real part of the Q-meter signal is measured, then T(w) is ob-
tained from Eq.(8). Thus, in the linear approximation, the integral of the
real part of the output voltage over the frequency sweep as in Eq.(16) is
generally proportional to the nuclear polarization, since although according
to Egs.(18) and (19) S(w) contains frequency dependent coefficients, these
are independent of the polarization. However, the integral of T(w) of
Eq.(19) is non zero especially in the case of high polarized deuterons with
asymmetric signals. For narrow symmetric signals, however, this propor-
tionality is well obeyed even if the line shape &'’ (w) changes as a function of
the polarization.

4.2. The Line Shape Distortion of Proton Signals

We estimate the line shape distortion for protons from Eq.(14) with the
values y! = 5mu, tanh(yl) = 0, G(w) cosh(yl) = 1, pR, = 8.5. The denomi-

nator of Eq.(14) becomes

1 — p” 'R ,G(w) cosh(y]) {pp +[1+p[R-— tarih(yz)] { Vozi;’)]
P
~ t( ) out(®)
1% Vn 85‘ Vn(t) ] 20)

where V = V A(w) =5 V. Consequently, the following equation, valid for
the region near the Larmor frequency (§'= 0), is obtained for the output sig-

12
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Fig.2. The dotted line shows the dispersion, £ '(w), and the solid line shows
the absorption, £'’(w). These are the imaginary and real outputs of the
QO-meter, respectively, after making a transformation by Eq.(14) using the
proposed additions to the Q-meter shown in Fig.1. The line shape for the
absorption signal is the modified lorentzian function & "(w) ~

w — W,
~{1+l 0
g

2.54 4 -1
J found in [9]

nal for both positive and negative polarizations (sign of AV (w)) for any

frequency tuned cable (y/ = 5m)

9.7 {AV,  (@)/V, (@)}

§'@) = g By @)V @) QD

Eqgs. (20, 21) clearly show that the distortion as well as the nonlinearity of
the output signal depend on the amplitude of the Q-meter output voltage and
the shunting resistances R,and R G

In order to better demonstrate the distortion of the proton signal shape
we simulate the absorption part of the proton susceptibility by a Lorentzian-
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Fig.3. This plot shows the line shape distortion ot the real part of proton signals
for the same but opposite signs polarization. The modulation is 0.30 for the
positive signal and -0.38 for the negative signal. The solid line is the Q-meter
signal for negative polarization and the dotted line is for positive polarization.
The susceptibility has an original width of 70.0 kHz at FWHM. The positive
signal is broadened to 76.0 kHz at FWHM while the negative signal is narrowed
t0 62.0 kHz at FWHM

like function found in [9]. The dispersion is then calculated from Eq.(15)
using the algorithm of Sperisen [10]; this is shown in Fig.2. The constant
1 X, is adjusted to give the desired value of the modulation (M). The simula-

tion calculates the Q-meter output signal as a function of the susceptibility
from Egs.(3,4). The results are plotted in Figs.3,4. For the same but oppo-
site sign of polarization, that is the same but opposite sign of susceptibility,
we calculate the Q-meter output voltage and find that the positive polariza-
tion Q-meter signal (M = 0.30) is broadened to 76.0 kHz at FWHM whereas
the negative polarization Q-meter signal (M=-0.38) is narrowed to 62.0 kHz
at FWHM with respect to the width of the susceptibility of 70.0 kHz at
FWHM. The proton signal amplitude is larger for negative polarization than

14
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Fig.4. Same as Fig.3 except the Q-meter signals and absorptions - have
been normalized in order to highlight the line shape distortions. The widest
line is the Q-meter signal for positive polarization, the narrowest line is the
Q-meter signal for negative polarization and the middle (dotted) line is the
susceptibility that generated the signals
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for positive, as expected. The ratio of the area of the positive Q-meter output
signal to the negative Q-meter output signal is 0.975.

4.3. The False Asymmetry of Deuteron TE Signals

The double peaks of the deuteron (spin / = 1) spectrum correspond to
two quadrupole broadened transitions which partly overlap. If we define J +

to be the intensity of m = 1 «»>m = O transitionand /_ to be the intensity of
m = 0 «>m = — 1 transition, where m = (Iz), then the two deuteron peaks
correspond to the /_ and the /_ transitions. Defining the ratio of the inten-
sities of these transitions as R = / . /1_ the deuteron polarization can be

written in the well-known form

15



R -1
Pp=———.
R°+R+1 :
Let us calculate the false asymmetry of the deuteron thermal equilib-
rium (TE) Q-meter calibration signal caused by the frequency dependent

coefficient Gz(w)/ w. According to the Maxwell — Boltzmann distribution,
the natural polarization in 2.5 T field and at a temperature of T = 1 K, given
by the Brillouin function (I = 1) as

(22)

4 tanh (hw /2kT)
P =
P 3+ tanh’(hw /2kT)

= 0.00052, 23)

where # is Plank’s constant divided by 2x, k is Boltzmann’s constant and
w ;= 2rx16.35 MHz is the deuteron Larmor frequency for a magnetic field

of 2.5 Tesla. For the TE polarization, the natural asymmetry of the deuteron
signal is found from Eq.(22) as R .= 1.00078 when Pp=0.052% from

Eq.(23).

In order to estimate the false asymmetry we ignore the integral in
Eq.(8) and assume thatr = a = 0, reg=1Z;(@g)|=R=9Q,p = 0.02Q7!,
wL = p = 50 Q so that we have from Eq.(17)

t

v Aw, o\ (Rg)  (AV, ()
.f;‘ios 13 (wio) = (1+ 2preff) 1-2x ™ Z)f] Re —_Vn =
Aw+0
=~ 20 (1—27: wo_ )S:O’ 24)

where Aw0= 0 and Awi =o,-w,==* 27 x 60 kHz is the half distance bet-

ween the peaks of the NMR signal for deuterated 1-butanol d-10. Using an
expression for the deuteron asymmetry from [11 ], we can compare the na-
tural asymmetry to the experimentally measured asymmetry. The natural
asymmetry R = 1.00078 from Egs.(22, 23), according to [11 ] must cor-

respond to the peak susceptibility asymmetry

£, /&5~ 0,707

R .=~ ————— = 1.00078. 5)
g [E,—0.707

To calculate the false asymmetry, we have to replace the values of suscep-
tibility in Eq. (25) with the corresponding signal values, which should be cal-
culated from Eq.(24). Thus,

16



_8,/84-0,707

24757 17 26)
Rexp™5_75,= 0707 = 1075

The signs (+, —, 0) in Eqgs.(25, 26) are defined in [11] as the signal extre-
ma for the respective 7 + and I _ transitions, and middle point of the deuteron
signal respectively, and S +¢ refers to the value of the real part of the signal
at those points. From the deuteron experimental TE signals [12 ] we estima-
ted the ratio 5:/55 = .E:/l;‘(')' = 1.95 + 0.05 to calculate S 1/ S, from Eq.(24)
and Rexp using Eq.(26).

According to Egs.(22, 26), the polarization is equal to 4.8% at
R___=1.075 due to the false asymmetry instead of 0.052%, which is found

exp
by using the asymmetry value R .= 1.00078. The above example can be

used to illustrate the difficulty in using Eq.(22) inversely to determine P -
fromR__ . We believe this effect explains the systematic difference between

the values of polarization measured by the asymmetry method and the TE
method. As a minimum requirement when analyzing enhanced deuteron
signals, Eq.(24) must be used as a simple yet necessary correction to the
false asymmetry.

4.4. The Distortions of NMR Signals
Caused by Phase

Eg.(14) enables us to calculate the complex magnetic susceptibility from
the NMR signal S(w) + iT(w). However, the Q-meter output voltage, acting
on the PSD input, incorporates the complex factor V,= A(w) V,; (see Eq.(8)).

AV, = A@@)V,; {S@) + iT(@)}, Q27

1

which must be taken into account for accurate measurements. We define the
phase of the rf generator voltage to be zero. With this convention, the
complex amplitude A(w) V from Eq.(27) is

A@)V,; = |Aw)V,| e @), (28)

where ®(w) is the phase shift of the amplifier, see Fig.1. The PSD output
voltage is equal to

AVpsn(@) = [A@)V, | {S(@) + iT(w)} e E@¢@I - (59)
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Fig.5. A plot of the distortion of proton signals due to phase shifts. For a sym-
metric absorption, the Q-meter output voltage is distorted when the phase & is
non-zero. This plot corresponds to a constant phase of + 5.0° for the dotted
line and a constant phase of — 5.0° for the solid line
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where ¢(w) is the phase of the voltage applied to the local oscillator (LO)
input. We remind that the PSD output voltage does not depend on the ampli-
tude of the LO voltage. It is usually assumed that the phase shift ®(w) of the
amplifier in the difference ®(w) — ¢(w) is compensated approximately by
using a similar amplifier at the reference input of the PSD (omitted in
Fig.1). During the tuning procedure, in accord with Eq.(29) the phase diffe-
rence $(w) — ¢(w) has to be accurately adjusted to zero at the frequency
wy= 27rv0, which is where T(§ = 0, wg) = 0and Im {Z (¢ =0, wo)} =0in
Eq.(29). This is so that the PSD detects only the real part of the Q-meter
output voltage

Re (AVpep (@) = |A(@) V| S(w), 30)

which converted to zero intermediate frequency voltage in the PSD. In the
absence of the imaginary part of this voltage, the phase tuning of the Q-meter

18



may be done only approximately using the characteristic Q-curve shape.
The error in the setting of the phase relation of PSD gives rise to additional
distortion of the signal. It is evident from the plots in Fig.5 showing the pro-
ton signal for the phase errors of + 5 and — 5 degrees. Comparing with plots
of Fig.4, which were calculated with ¢ = 0, we see the substantial distortion,
predominantly in the antisymmetric features appearing in the signal wings.
Due to this the integral in Eq.(2) may deviate form the original value by an
amount which depends strongly on the zero line position (see Section 6).
The Q-meter with detection of the real and imaginary parts will allow more
accurate phase tuning in additional to the extraction of the true
susceptibitliy, using Eq.(14), including the phase correction function
P(w) — ¢p(w) in Eq.(29).

5. The Shape of the Q-curve

An accurate TE-calibration normally requires a special experimental
procedure (such as immersion in superfluid helium-4) to maintain the
sample material at a homogeneous and accurately known temperature where
the polarization is described by the Brillouin function. This calibration then
remains valid for some period of time during which the polarization is deter-
mined by comparison of the integrated signals to the TE signals. After the
calibration, we have to estimate and correct in some way the influence of
circuit parameter drift on the measurement of target polarization.

Another problem arises with the TE-calibration of small signals such as
those of the deuteron. Circuit parameter drift leaves a residual Q-curve, the
differential Q-curve (due to temperature drift) superimposing with the TE
signal, whose integral can be greater than that of the TE signal. In this case,
the TE-calibration is dependent on the procedure used to subtract the Q-
curve. Consequently, we would like to know the true equation for the
residual Q-curve.

Both problems are addressed by fitting Eqs.(3,4) with £ =0 to the
measured Q-curves, thus determining the circuit parameters and the
residual Q-curve.

The Q-curve is calculated from the real part of Eq.(3) with & = 0. Sepa-
rating the real and imaginary parts of Eq.(3) gives [3]

Re [ Vom(w), _ 1 [Re(2) + p{Re*(Z) + Imz(Z)}J ab)
v, Rz 11+ pRe(2) 1%+ p’Im?(2)
and
Im [ Vout(w)J _ 1 Im(2)
v, R [ [1 + pRe(Z) P+ pzlmz(Z)] ' (32)
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The real part can be rewritten in the form

out(w)} 1 {1_ 1+ pRe(2) 33)

V, PR [1 + pRe(Z) P+ p’Im%(2)

Then using relations taken from [1 ] and applying them to Eq.(4) we find [6]

Vout(w) —
Vn
U, 1+ p(R+A/A) i
PR, [1 + p(R + A/ A) P+ pPA,/ Ay~ l/C, P
where 2 2
wlL r 2 .2 I wlL
Ay=1-2%, 25 + 2% L+ P+ k (p) ( )] 35
0 2p 1p ? P 3
_ roa2, 2 wL
Al—r{l+k1p+(k+k)}+pk[l+(p)} (36)
and
2 sz
A= oL {1 - (K*+ K2} +pk2[l - (ﬁ) -~ (7)—) ] (3D

We have made use of the relation tanh(yl) = k, + ik, where

= tanh(ad - _@o@h )+ tanh¥al) wn®@B). @39
kycos“(Bl) kycosh®(al)

It is clear from Eq.(34) that the resonance value for the capacitance is
very close to Cp= AO/ Az/ w so this formula can be used for either a hybrid or

normal resonance circuit.

Using this method, a baseline fit can be made at any time in order to
calculate new values for the drifting circuit parameters. These new values
can then be used in Eq.(14) to correct the NMR signals, thus producing a
method to compensate for parameter drift in the time between measuring
the TE-calibration signals.

Let us determine as an example the drift in the baseline during the TE-
calibration due to the temperature drift of yl, we take the derivative with
respect to yl of Eq.(3) at § = 0 which gives
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where y(t = 0) is the value of the complex propagation constant at the start
of the TE-calibration and y() is its value a time ¢ later. These values are
determined by fitting Eq.(34) to the baseline signal.

6. Errors in the Polarization Calculation

Within the scope of the series Q-meter, it is useful to mention some
important considerations in the calculation of the polarization. As is well
known, the absorption part of the susceptibility describes the frequency dis-
tribution of the spins near the NMR Larmor frequency, and its integral is
proportional to the nuclear polarization. Strictly speaking, the polarization is

P=C [ §'(w)dw. (40)
0

However, in practice the absorption can only be measured in a small range
around the Larmor frequency. Thus, the integral in Eq.(40) is measured
over restricted limits. Moreover, it is generally assumed that the Q-meter
signal, S(w), is proportional to &'’ (w) and that

P=C_[ S(o)dw, (41)
0

where the constant of proportionality, Cs is a function of the modulation, the

circuit parameters, and the target material. But, the general theory of linear
two terminals [7 ] tells us that the integral in Eq.(41) can be calculated inde-
pendent of the circuit parameters as

J{5(@) = 8} do = - 7 limoT(w), (42)
0

>N
where S(w) and T(w) were described in Eq.(8) and

S = lim S(w). (43)

> 00

Typically the wings of an absorption line fall down faster than for a Lorent-
zian function. For a Lorentzian shape, the absorption and dispersion will fall

off asymptotically at least as fast w2 and ! respectively. Multiplying
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Fig.6. A plot of the Q-meter signal over a 150 MHz sweep

Eq.(13) by w and taking the limit w -» o, we see that the numerator goes like
 and the denominator like 2, so the quantity wA Vout(w)/ v, falls off like

@~ !. The result is that

oo

{ S(@) =0 | (44)

such that the integral is not dependent on the receiving circuit’s parameters.
The function S(w) is plotted in Fig.6 for a very wide sweep. The effect of the
cable and slowly decaying dispersion tail on the circuit inductance is visible.
In this figure, the cable nodes occur every 21.3 MHz, which is what is expec-
ted for a cable with length 54/2 at 106.5 MHz Larmor frequency.

The shape of the signal must be taken into account when designing the
Q-meter and when calculating the errors in the polarization measurement.
In fact, one can see from Figs.3 and 5 that signal crosses the zero line on
both sides of the Larmor frequency. This produces an extra error depending
on where one draws the line about which S(w) is integrated. That is, the
signal voltage should be allowed to cross zero when calculating the integral,
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Fig.7. An illustration of error in the proton polarization measurement
shown as a function of modulation M for positive polarization. The
measure of error is the ratio of the positive signal’s integral to the
negative signal’s integral for susceptibilities differing only in sign. The
constant Sy(w) is an offset added so that each signal has the same sign
over the entire frequency sweep (i.e., the signal wings do not cross
zero)

and should not be offset such that it always has the same sign. There is a
difference of a factor of two in the error for the two cases. This is plotted in
Fig.7.

7. Conclusions

We have presented a new Q-meter theory for accurate measurements of
nuclear polarization. From this analysis it is clear that new techniques must
be developed based on the principles embodied in Egs. (14,34) of this paper
because the usual methods, based on series expansions of Egs.(3,4), cannot
be easily adapted to correct experimental data. We list the next steps in the
development of polarization measurements:

1. The series Q-meter [5] needs to be improved by the addition of a
separate phase sensitive detector to measure the imaginary part as well as
the real part of the Q-meter output signal. Also, one ought to add a function

converter (see Fig.1) which calculates §(w) from AV  [(w)via Eq.(14). Itis

§(w), not AV (w), whose integral is exactly proportional to the nuclear

polarization. The reason for measuring the imaginary part of the Q-meter
signal is to avoid the numerical calculation of the integral in Eq.(8), thus
allowing fast and accurate corrections due to dispersion effects.
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2. The origins of the false asymmetry of the deuteron signal and the
distortions of the proton signal are demonstrated and henceforth can be
accounted for.

3. It is proposed to determine circuit parameters by fitting Eq.(34) to
data. This would allow a method for accurate correction of the polarization
for circuit parameter drift during long periods between TE calibrations.

4. The experimental calibration signals can be corrected for the residual
Q-curve by fitting Eq.(39) to real data. This residual contribution is caused
by temperature drift of circuit elements such as the complex propagation
constanty during long time it takes to gain high statistics for the TE-signals.

3. The susceptibility now be corrected for errors caused by the depen-
dence of the phase on the frequency. Within the scope of this theory, the
effects of phase distortions can now be accounted for for the first time.
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